

Produits pour l'hydrogène H₂

Sommaire

Sommaire	2
1 Utilisation de l'hydrogène	3
2 Certifications	4
3 Compatibilité avec l'hydrogène	5
3.1 Vannes et accessoires	5
3.2 Brûleurs	6
4 Étanchéité	7
5 Calcul du diamètre nominal	9
6 Directive pour l'étude de projet	10
6.1 Principes fondamentaux de la combustion en cas	
d'addition d'hydrogène dans du gaz naturel	10
6.2 Conversion des systèmes de brûleurs existants	10
6.3 Surveillance et commande de brûleurs en cas	
d'hydrogène	11
Pour informations supplémentaires	12

1 Utilisation de l'hydrogène

L'importance de l'hydrogène en tant que source d'énergie climatiquement neutre ne cesse de croître.

Honeywell Thermal Solutions vous propose des vannes et des brûleurs adaptés à l'utilisation de l'hydrogène dans les procédés thermiques industriels.

L'hydrogène est l'élément le plus petit et le plus léger du tableau périodique. Il se présente généralement sous la forme moléculaire H_2 , c'est un gaz incolore et inodore. Dans certaines réactions chimiques, l'hydrogène apparaît temporairement sous forme atomique H. Sous cette forme, il se caractérise par une réactivité nettement plus élevée comparé aux molécules normales de H_2 . La « fragilisation » par l'hydrogène, due par exemple à la pénétration d'hydrogène atomique dans les métaux sous l'effet de pressions élevées, de températures élevées, de vibrations et d'acide, ne peut se produire pour les produits couverts par la présente information technique.

En raison de sa faible masse volumique par rapport au gaz naturel, l'hydrogène peut s'échapper plus facilement, par exemple au niveau des raccordements.

Pour toutes les vannes et tous les brûleurs compatibles avec l'hydrogène, voir page 5 (Compatibilité avec l'hydrogène).

Pour plus d'informations sur l'étanchéité, voir page 7 (Étanchéité).

Comparaison des flammes pour le ThermJet TJ avec 213 kW, λ = 1,15

100 % de gaz naturel

Rapport gaz naturel/hydrogène 40/60

Rapport gaz naturel/hydrogène 20/80

100 % d'hydrogène

2 Certifications

Actuellement, il n'existe aucune base de contrôle pour l'hydrogène dans le règlement (UE) 2016/426 concernant les appareils brûlant des combustibles gazeux.

Dans ce domaine, la société Honeywell s'emploie au sein du CEN TC58 (Comité technique européen de normalisation) à adapter les normes existantes au fluide H₂ (par exemple, EN 161 pour les vannes de sécurité).

Les normes d'application actuelles ISO 13577 et EN 746 pour les équipements thermiques industriels ou EN 676 et ISO 22967 pour les brûleurs à air soufflé pour combustibles gazeux ne contiennent aucune information sur l'hydrogène. Toutefois, dans le cadre des révisions en cours actuellement, la question de savoir quelles réglementations supplémentaires seront incluses pour les gaz combustibles à forte teneur en hydrogène fait l'objet de discussions.

Ce processus de normalisation pourrait durer jusqu'à l'an prochain.

3 Compatibilité avec l'hydrogène

3.1 Vannes et accessoires

Туре	Désignation	100 % de H ₂		
Robinets à boisseau sphérique et filtres				
AKT	Robinets à boisseau sphérique	√		
TAS	Protections thermiques de robinetterie	√		
GFK	Filtres gaz	√		
Régulateurs	de pression			
J78R	Régulateurs de pression gaz	√		
GDJ	Régulateurs de pression gaz	√		
VGBF	Régulateurs de pression gaz	√		
JSAV	Clapets de sécurité	1		
VSBV	Soupape d'échappement	√		
VAR	Régulateurs de circulation et de décharge	√		
GIK, GIKB	Régulateurs de proportion gaz	1		
GIKH	Régulateurs de proportion variable	√		
Vannes et c	apets			
VAS	Électrovannes gaz	1		
VCS	Électrovannes doubles	1		
VAD	Régulateurs de pression avec électrovanne	J		
VAG	Régulateurs de proportion avec électrovanne	1		
VAH	Régulateurs de débit avec électrovanne	1		
VRH	Régulateurs de débit	1		
VAV	Régulateurs de proportion variable avec électrovanne	1		
VBY	Vannes de by-pass	1		
VMV	Vannes de précision	1		
VMO	Diaphragmes de mesure			
VMF	Éléments de filtre √			
VGP	Électrovannes gaz √			
VG	Électrovannes gaz	√		
VAN	Électrovannes d'évent	1		

		1
Туре	Désignation	100 % de H ₂
PV	Vannes motorisées	1
BVG, BVGF	Vannes papillon pour gaz	1
VFC	Vannes de régulation linéaire	1
VR4xx	Blocs de régulation gaz	√
VRB	Blocs de régulation gaz	1
V4730, V8730	Blocs de régulation gaz	√
VMU	Mixeur	√
RV	Vannes de réglage	J
Pressostats		
DG	Pressostats gaz	J
C6097	Pressostats gaz	J
C60VR	Pressostats gaz	J
DGM	Pressostats gaz √	
Composant	s d'allumage et de contrôle	
UVS	Cellules UV	J
UVC 1	Détecteurs de flamme UV	J
Accessoires	• • • • • • • • • • • • • • • • • • •	
KFM, RFM	Manomètres	√
GEH, GEHV	Robinets de réglage du débit	
DH	Robinets de manomètre manuel √	
DMG	Manomètre électronique √	
EKO	Compensateurs en acier spécial √	
ES	Tuyaux flexibles en acier spécial √	
GRS, GRSF	Clapets anti-retour gaz √	

Les débitmètres DM, DE sont compatibles avec de l'hydrogène à 20 %.

3.2 Brûleurs

Туре	Désignation	50 % de H ₂ *	30 % de H ₂
ZAI	Brûleurs d'allumage	\checkmark	√
ZMI (C)	Brûleurs d'allumage	1	√
ZKIH	Brûleurs d'allumage	1	√
ZIO 40	Brûleurs d'allumage	1	√
ZT 40	Brûleurs d'allumage	1	√
ZTA	Brûleurs d'allumage	1	√
ZTI	Brûleurs d'allumage	√	1
BIO, BIC, BIOW, BICW	Brûleurs	1	√
BIOA, BICA	Brûleurs	1	√
ZIO, ZIC, ZIOW, ZICW	Brûleurs	1	1
BIO(W), BIC(W)	Avec brûleur d'allumage	1	√
ZIO(W), ZIC(W)	Avec brûleur d'allumage	1	1
BICMB	Brûleurs		
BICR	Brûleurs	1	1
GLG, GLA, GLH	Brûleur de four de fusion à cloche	1	√
ECOMAX	Brûleurs auto-récupéra- teur	√	1
ThermJet	Brûleurs	√**	√**
Wide Range	Brûleurs		√
Uni-Rad-Vilvoorde	Brûleurs	√	√
PrimeFire FH (Next Gen)	Brûleurs	\checkmark	√
OxyTherm 300	Brûleurs	\checkmark	√
OxyTherm LE	Brûleurs	1	√
PrimeFire 100	Brûleurs	\checkmark	√
OxyTherm FHR	Brûleurs	\checkmark	√
OxyTherm Titan	Brûleurs	√**	√**
NP-RG	Brûleurs	√**	√**
LV Airflo	Brûleurs	√**	\
Combustifume	Brûleurs	√**	√**
HC Airflo	Brûleurs	√	√
OvenPak 400	Brûleurs		√**

Туре	Désignation	50 % de H ₂ *	30 % de H ₂
OvenPak 500	Brûleurs		√
ValuPak II	Brûleurs		√**
UnoPak	Brûleurs		√**
MegaFire HD	Brûleurs		√ **
Kinemax	Brûleurs	V	1

^{*} Concentration d'hydrogène plus élevée sur demande

^{**} La combustion de la quantité d'hydrogène spécifiée est possible après des ajustements mineurs du brûleur et une vérification de l'application.

4 Étanchéité

En raison de la taille moléculaire plus petite et de la viscosité dynamique modifiée de l'hydrogène (H₂), les débits de fuite changent comparé au méthane (CH₄).

Étanchéité interne et externe suivant la norme EN 13611

Les appareils à gaz doivent être étanches, les débits de fuite spécifiés selon la norme EN 13611 pour l'air doivent être respectés.

Diamètre nomi- nal	Fluide	Étanchéité interne [cm³/h]	Étanchéité externe [cm³/h]	
DN < 10	Air	≤20		
10 ≤ DN ≤ 25	Air	≤ 40		
25 ≤ DN ≤ 80	Air	≤ 60		
80 ≤ DN ≤ 150	Air	≤ 100	≤ 60	
150 ≤ DN ≤ 250	Air	≤ 150	≤ 60	

Si l'addition de H_2 est inférieure à 10 %, les débits de fuite suivant la norme EN 13611 sont respectés.

Le tableau suivant indique les débits de fuite calculés pour 100 % d'hydrogène (H₂):

Diamètre nomi- nal	Fluide	Étanchéité in- terne [cm³/h]	Étanchéité ex- terne [cm3/h]
DN < 10	Hydrogène (H ₂)	≤ 25	
$10 \le DN \le 25$	Hydrogène (H ₂)	≤ 80	
25 ≤ DN ≤ 80	Hydrogène (H ₂)	≤ 120	
80 ≤ DN ≤ 150	Hydrogène (H ₂)	≤ 200	≤ 120
150 ≤ DN ≤ 250	Hydrogène (H ₂)	≤ 300	≤ 120

Dans une application avec 100 % de H_2 ou une addition de H_2 supérieure à 10 %, le respect des débits de fuite suivant la norme EN 13611 n'est pas garanti en raison de la masse volumique plus faible et de la modification de la viscosité

dynamique de l'hydrogène. **L'aptitude** de l'application à fonctionner avec des mélanges de gaz naturel et d'hydrogène dans une proportion d'hydrogène ≥ 10 % **doit être déterminée par une évaluation des risques**.

Orifices d'évent des pressostats et des régulateurs de pression suivant la norme EN 13611

Les orifices d'évent des appareils à gaz à diaphragme dépourvus d'un raccordement pour tuyau d'évent doivent être conçus de sorte qu'en cas d'endommagement du diaphragme, le débit de fuite d'air soit limité à 70 dm³/h à la pression amont la plus élevée. Ce débit d'air de 70 dm³/h correspond en cas d'endommagement à un débit de fuite de 100 dm³/h de gaz naturel (CH4) ou de 270 dm³/h d'hydrogène (H2).

Limites d'inflammabilité

Mélange de gaz	Limite inférieure [% vol.]	Limite supérieure [% vol.]
H ₂	4,0	77
CH ₄	4,4	16,5

Dans les applications avec de l'hydrogène, la limite inférieure d'inflammabilité est atteinte plus rapidement.

Étanchéité

Calcul du débit

Dans le cas d'un « écoulement turbulent », tel qu'il prévaut dans un orifice d'évent, le débit peut être calculé en utilisant le ratio de densité :

Facteur de conversion à partir du ratio de densité (air comme grandeur de référence) :

Fluide	Masse volumique [kg/ m³]	Facteur de conver- sion
Air	1,29	1
Gaz naturel H	0,81	1,3
H ₂	0,09	3,79

L'étanchéité des systèmes doit être vérifiée avant la mise en service. Outre les dispositifs, les raccords filetés et à brides sont également contrôlés.

5 Calcul du diamètre nominal

Une application web pour le calcul du diamètre nominal est disponible sur <u>www.adlatus.org</u>.

Pour l'hydrogène ou les mélanges hydrogène-gaz naturel, entrez manuellement la masse volumique appropriée.

6 Directive pour l'étude de projet

6.1 Principes fondamentaux de la combustion en cas d'addition d'hydrogène dans du gaz naturel

Le pouvoir calorifique des mélanges de gaz naturel et d'hydrogène diminue sensiblement en augmentant l'addition de H_2 , ce qui signifie qu'un débit de gaz plus important est nécessaire pour obtenir la même puissance thermique. En raison de la faible masse volumique de l'hydrogène, l'indice de Wobbe diminue nettement moins, mais la pression de gaz doit augmenter de 65 % maxi. pour obtenir la même puissance. La vitesse d'écoulement de 20 à 30 m/s recommandée pour le gaz naturel doit également être respectée en cas d'additions de H_2 .

La vitesse laminaire de la flamme de l'hydrogène est nettement supérieure à celle du gaz naturel. Cependant, dans de nombreux brûleurs, avec une addition de H_2 la longueur de flamme visible ne change pour ainsi dire pas. Toutefois, selon la conception du brûleur, la vitesse élevée de la flamme peut entraı̂ner des résonances et la formation de bruit.

Le besoin en air de combustion diminue quand l'addition de H_2 augmente, ce qui signifie que pour un système donné, il n'y a pas de risque supplémentaire lié à l'excès de gaz en cas d'addition de H_2 . Sans modifier le réglage du brûleur, l'excès d'air augmente cependant jusqu'à 45 %, d'où la nécessité de vérifier si le brûleur peut encore fonctionner de manière stable avec une addition plus élevée de H_2 .

La température de combustion adiabatique et la température de la flamme augmentent si l'addition de H_2 augmente. D'où une augmentation de la formation de NO_X thermique et, notamment à partir d'une addition de H_2 d'environ 50 %,

une augmentation exponentielle de l'émission de NO_x a lieu, ce qui impose des mesures supplémentaires de réduction de NO_x , par ex. en augmentant l'excès d'air ou en optant pour des brûleurs appropriés à faibles émissions de NO_x .

6.2 Conversion des systèmes de brûleurs existants

Dans le cas d'une addition de 10 à 20 % d'hydrogène au gaz naturel, il suffit généralement de réajuster les brûleurs, en particulier pour les solutions à faibles émissions de NO_x, auquel cas un réglage précis du rapport gaz/air est crucial. Pour les mélanges qui varient, un contrôle élargi du rapport gaz/air doit être effectué.

Pour des teneurs en hydrogène plus élevées, on choisira un brûleur adapté au type de gaz.

6.3 Surveillance et commande de brûleurs en cas d'hydrogène

En raison du principe physique, le contrôle de la flamme pour 100 % d'hydrogène ou de l'hydrogène mélangé au gaz naturel à plus de 95 % environ ne peut pas être effectuée par ionisation, mais uniquement par des cellules UV.

En raison de la limite d'inflammabilité nettement plus élevée de l'hydrogène comparé au gaz naturel, il convient de vérifier au cas par cas s'il est nécessaire de purger la conduite de gaz entre la vanne de sectionnement et le brûleur après avoir éteint le brûleur (fermeture des vannes automatiques de sectionnement). Dans certains cas, Il est possible qu'un mélange inflammable se forme entre le brûleur et la vanne de sectionnement et qu'un retour de flamme se produise dans la conduite de gaz lorsque le brûleur est remis en marche. En présence d'hydrogène, les vannes de sectionnement devraient toujours être placées le plus près possible du brûleur pour réduire au minimum le risque d'un mélange potentiellement inflammable.

Pour informations supplémentaires

La gamme de produits Honeywell Thermal Solutions comprend Honeywell Combustion Safety, Eclipse, Exothermics, Hauck, Kromschröder et Maxon. Pour en savoir plus sur nos produits, rendez-vous sur ThermalSolutions. honeywell.com ou contactez votre ingénieur en distribution Honeywell. Elster GmbH

Strotheweg 1, D-49504 Lotte
T +49 541 1214-0
hts.lotte@honeywell.com

© 2021 Elster GmbH

Sous réserve de modifications techniques visant à améliorer nos produits.

www.kromschroeder.com